
BEST PRACTICES TO SECURE
WEB APPLICATIONS

Ronak Hingonia

IIT Gandhinagar

ronakhingonia1@gmail.com

I. INTRODUCTION

This document is intended for students and professional developers as a quick reference checklist for security
practices. It covers 11 categorized security aspects that, when implemented, can help prevent the corresponding
attacks. A before-and-after code example is then presented to demonstrate what secure code looks like in Ex-
press.js for easier understanding. Finally, a table lists the top open-source security tools every developer should
know.

II. KEY TERMS

Authentication, Authorization, Encryption, Firewall, Web Application, Vulnerability, Attack

III. DEFINITIONS

1. Authentication: The process of verifying the identity of a user or system.

2. Authorization: The process of restricting user access to resources based on roles or permissions, ensuring
that users can only perform actions within their privileges.

3. Encryption: The technique of converting information into a secure format.

4. Firewall: A network security system that monitors and controls incoming and outgoing traffic.

5. Web Application: A software application that runs on a web server and is accessed via a web browser.

6. Vulnerability: A weakness in a system that can be exploited to cause harm.

7. Attack: An information security threat that involves an attempt to obtain, alter, destroy, remove, implant, or
reveal unauthorized information.

IV. ABBREVIATIONS

• SQL: Structured Query Language
• XSS: Cross-Site Scripting
• MFA: Multi-Factor Authentication
• 2FA: Two-Factor Authentication
• RBAC: Role-Based Access Control
• ABAC: Attribute-Based Access Control
• TLS: Transport Layer Security
• HSTS: HTTP Strict Transport Security
• DoS: Denial-of-Service
• DTO: Data Transfer Object
• CORS: Cross-Origin Resource Sharing

• OSS: Open Source Software
• CI/CD: Continuous Integration / Continuous Deploy-

ment
• IDE: Integrated Development Environment
• SBOM: Software Bill of Materials
• CLI: Command-Line Interface
• ZAP: Zed Attack Proxy
• OSV: Open Source Vulnerabilities
• KICS: Keeping Infrastructure as Code Secure
• OPA: Open Policy Agent
• IaC: Infrastructure as Code

1

S
No.

CATEGORY DESCRIPTION IMPLEMENTATION/ PRACTICES PREVENTS FROM

1 Authentication Verifies the identity of
users or systems to
ensure that only
legitimate actors gain
access to the application.

• Enforce multi-factor authentication
(MFA) or two-factor (2FA)

• Use secure hashing algorithms for
storing passwords

• Integrate biometric or OTP
solutions

• Unauthorized
access

• Identity spoofing
• Brute force attacks

2 Authorization Restricts user access
based on roles or
attributes, minimizing
damage from
compromised accounts.
Critical for compliance
and data integrity

• Deny by default
• Never trust the request
• Follow Least privilege
• Use role-based (RBAC) or attribute

based access control (ABAC)
(preferred)

• Decouple from logic: use Custom
security expressions

• No hard-coding
• Secure APIs with token validation

(authentication)

• Unauthorized
resource access

• Role Explosion
• Broken object level

Authorization
• Data breaches
• Misuse of system

functionality

3 Data Control Prevents Excessive Data
Exposure—a
vulnerability where more
information than
necessary is sent to the
client, inadvertently
exposing sensitive data.
This type of problem is
often framed as Broken
Object Property Level
Authorization (BOPLA)

• Create Data Transfer Objects
(DTOs)

• Least privilege
• Select only the fields that are safe

and necessary for the client.
• A mapper library can be used

instead of manually created DTOs.

• Property Level
issues

• Unauthorized
disclosure of
sensitive data

4 Input
Validation

Ensures that
user-provided data
conforms to expected
formats and rules before
processing, preventing
malicious input from
being processed by the
application.

• Never trust the request
• Validate type, length, format, and

range
• Enforce Limits
• Validate Strings (use regexp)
• Prefer allowed lists (deny by

deafault)
• Validate Parameters
• Should add the same validations on

frontend as well

• SQL Injection
• XSS (cross-site

scripting)
• Command

injection.
• Exceptions - might

expose the tech
stack being used in
back end which
can be then used
by a malicious
actor.

5 File Upload File uploads can be a
significant security risk if
not handled correctly.
Attackers can upload
malicious files that can
compromise the security
of the entire application

• Scan the file first for viruses
• Never trust the request
• Use upload & download limits
• Do not trust the content type

headers because that can be altered
as well.

• Validate the extension and type of
file

• Set file name length limit
• Always check for file MetaData

directly

• Path traversal
vulnerabilities

• Malware Injection
• Performance issues
• Remote code

execution

2

S
No.

CATEGORY DESCRIPTION IMPLEMENTATION/ PRACTICES PREVENTS FROM

6 Cross Origin
Resource
Sharing

Manages how web
applications can request
resources from a different
domain, ensuring secure
cross-origin
communication.

• Configure CORS policies to allow
only trusted domains

• Use proper HTTP headers (e.g.,
Access-Control-Allow-Origin)

• Restrict methods (e.g., GET,
POST) and headers allowed in
cross-origin requests

• Avoid using wildcards (*) for
sensitive endpoints

• Implement preflight request
handling for complex requests

• Validate and sanitize incoming
cross-origin requests

• Unauthorized
cross-origin data
access

• Data leakage to
untrusted domains

7 Session
Management

Ensures secure handling
of user sessions to prevent
unauthorized access or
session hijacking.

• Use strong & random session IDs -
long and complex.

• Implement session expiration and
timeout policies

• Regenerate session IDs after login or
performs any sensitive actions.

• Use HTTPS for session cookies

• Session hijacking
• Session fixation
• Unauthorized

Data access

8 Rate Limiting Controls the frequency of
client requests within a
defined time frame to
protect application
resources from abuse and
overload

• Use algorithms like token bucket,
leaky bucket, fixed window, or
sliding window counters to control
the flow of requests.

• Use Distributed Rate Limiting to
ensure consistent enforcement across
multiple servers

• Implement at multiple layers (API
gateway, load balancer, or web
server level)

• Denial-of-service
(DoS) attacks

• Brute-force
attempts

• API abuse
• Resource

exhaustion

9 Secure Com-
munication

Ensures data transmitted
between the client and
server is encrypted and
protected from
interception.

• Use HTTPS with strong TLS
configurations

• Enforce HSTS (HTTP Strict
Transport Security)

• Disable weak ciphers and protocols

• Man-in-the-middle
attacks

• Data interception
• Eavesdropping

10 Web
Application

Firewalls
(WAFs)

Acts as a protective
barrier between the web
application and incoming
traffic by filtering,
monitoring, and blocking
malicious requests based
on pre-defined security
rules.

• Deploy a WAF (hardware, software,
or cloud-based)

• Configure custom security rules and
anomaly detection

• Automated attacks
• Cross-site scripting
• SQL injection
• Denial of service

11 Third-Party
Dependencies

Manages risks associated
with third-party libraries
and services used in the
application.

• Regularly update third-party
libraries

• Monitor for vulnerabilities in
dependencies

• Use trusted sources for libraries
• Limit permissions granted to

third-party services

• Exploitation of
library
vulnerabilities

• Supply chain
attacks

3

Secure Coding Practices (JS)

This document outlines secure coding practices in JavaScript and Express by demonstrating
common security vulnerabilities and their corresponding solutions. Each example is presented
in a "before-and-after" format to highlight the transition from insecure to secure code.

• The first code represents an insecure version with vulnerabilities, while the last code is its
secure, finalized version.

• Intermediate steps, if any, are shown with different themes are to illustrate the progression
toward secure implementation.

• Please go through the comments in code for explanation.

This visual approach is intended to make it easier to understand the security issues and how to
address them effectively.

1. Authorization

Cons: checking what is not allowed

Cons: Role Explosion (for larger systems)
Pros: Deny by default

Cons: Broken Object Level Auth. - Can update any course as long as you know ID?
Pros: Custom security expression, No hardcoding

Cons: Database exploitation (no source of truth)
Pros: Least privilege, Deny by default

Final Code (tally from the database first)

2. Property Level Issues (Data Control)

Problems in the above code:
❌ Exposes passwords
❌ Reveals admin status
❌ Potential data misuse

Improvements:
✅ Passwords are no longer exposed

✅ Admin status is hidden, preventing privilege enumeration attacks
✅ Only necessary fields (id, name, email) are returned
✅ Prevents accidental data leaks in future updates

3. Input Validation

Issues:
❌ No Input Validation – Allows any data type, length, or format.
❌ No Role Restriction – Any string can be used as a role.

❌ Potential DoS Attack Risk – Large or malformed inputs can overload the system.

Improvements
✅ Enums for Role Validation: Prevents arbitrary values.
✅ DTO for Input Validation: Enforces strict validation rules.
✅ Model for Data Structuring: Ensures consistency.

3.1 Parameters Validation

Issues:
❌ No Input Validation

❌ Denial of Service (DoS) Risk
❌ Excessive Data Exposure

Improvements
✅ Validated and Sanitized inputs with parameterized queries.

✅ Type Safety

3.2 SQL Injection

Injection Type-1:

Injection Type-2:

● Why is this secure?
- The ? placeholder ensures that user input is properly escaped and treated as data, not

code.

- The database handles binding the parameter, preventing malicious injections.

- Even if an attacker tries admin' OR '1'='1, the query remains:

4. File Uploads

Final Code

● Security Issues in the Above Code
1. Path Traversal: A user can upload a file with a name like ../../evil.sh, escaping the

upload directory.

2. No File Type Validation: Accepts any file type, including malicious ones.

3. No File Size Limit: Attackers can upload huge files to crash the server.

4. Trusting Content-Type Header: Easily spoofed by attackers.

5. No File Name Length Restriction: Very long filenames can cause issues.

Final Code

5. CORS (cross origin resource sharing)

❌ Allows all origins- risking unauthorized access
 ❌ Exposes highly data
❌ Lacks authentication

✅ Restricted Origins
✅ Limited Methods/Headers

✅ Authentication Check and Minimal Exposure

5 Open Source Security Tools
Developers Should Know

S
No.

Tool Result Quality DevX Customizability Maturity

1 SemGrep OSS
(Code scanner)

• 2000+ rules ported
from OSS tools
(gitleaks, findsecbugs,
gosec, more)

• Supports over 30+
languages

• Runs everywhere
(CLI, CI/CD,
Docker, IDE)

• Very fast: no
compilation
needed

• Very extensible,
with many outputs
formats

• Anyone can write
rules

Large
Community of
active
contributors,
many years of
development

2 OSV-Scanner
(Dependency

Checker)

• Leverage OSV DB
maintained by Google

• Aggregates curated
sources, i.e. Github
Security Advisories

• Supports 13 Languages

• Uses the OSV
schema

• Can run anywhere
(local, IDE, CI)

• Ability to scan
specific SBOM and
lockfiles

• Multiple options
(ignore, recursive)

Growing
popularity &
Community

3 KICS (IaC
Scanner)

• Includes 2000+ queries
supporting 18
frameworks

• Nightly Build
• Curated rules with unit

tests

• Provides 200+
build-in
remediation
recipes

• Runs everywhere
(IDE plugin, local,
CI)

• Queries written in
OPA (Rego)

• Ability to support
new frameworks

Growing
popularity &
community of
contributors

4 Trivy
(Container
Scanner)

• Supports scanning
container images, file
systems, git repos,
Virtual Machines,
secrets,
IaC(Kubernetes,
Terraform)

• Can generate SBOM

• Fast, no setup or
prerequisites (i.e.
Database or
external libs)

• Runs everywhere
(IDE plugin,
docker, local, CI)

• Extensible through
modules (write
your own detection
logic)

• Plugin to extend
the CLI

• High popularity
• Large

community

5 ZAP (Runtime
Scanner)

• Numerous features,
detects the OWASP
Top 10 risks

• 250+ curated rules

• Runs everywhere
(docker, desktop
app)

• Includes a headless
mode to integrate
in CI/CD pipeline

• Extensible through
extensions (100+
available today)

• Plugins to extend
the CLI

• GitHub top
1000 project

• Very popular &
large
community

• ZAP
Marketplace

	1. Authorization
	2. Property Level Issues (Data Control)
	3. Input Validation
	3.1 Parameters Validation
	3.2 SQL Injection
	4. File Uploads
	5. CORS (cross origin resource sharing)

